The laws of nature that we care about emerge through
collective self-organization and really do not require
knowledge of their component parts ... they owe their

reliability to principles of organization rather than to
microscopic rules.

- Robert Laughlin
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Bacterial reaction center: Are there certain general rules here?







Electric Elasticity (Maxwell)

When an electromotive force acts on a dielectric, it puts every part of the dielectric into a
polarized condition, in which its opposite sides are oppositely electrified.
“A dynamical Theory of Electromagnetic Field”, Maxwell, 1865.
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Maxwell: Elastic deformation of positive vs
negative liquid

Boundary value problem:
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...the advancement of science depends on the discovery and development of exact ideas ... to warrant the deductions
we may draw by the application of mathematical reasoning. - J. C. Maxwell

If the mathematics is universal, where do the specifics
of the system come in?



Biology’s energy chains

Energy input
O I
Cofactors Membrane LLLLL\

Electron hops ‘ ‘ ‘ ‘
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Catalytic site ADT ATP
Oy + 4H' 4+ 4e~ — 2H50

:

22 electron hops in mitochondria’s membrane over the free energy span
of I.I eV

*8-9 electrons per one ATP produced

*~25 kg of ATP produced daily in a human body
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Energy balance

Reorganization energy
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How does biology produce energy!?

The mathematical framework seems to be OK, but we tend to put the “wrong” physics into it!



Is it thermodynamics only?

Can we view biological energy flow as a
canonical ensemble problem?
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Cavity field Kihara solute:
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“Cavity” field inside a Kihara solute }
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Dipole of the interface

Total induced dipole of the hydration layer

protein dipole
dynamically frozey

Parameter quantifying the deviation Maxwell interface dipole projected
from the Maxwell scenario on x-axis of the external field



High-frequency (THz) absorption
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Deviation from the Maxwell prediction



THz absorption of sugars and amino acids (aq)

Rotations of a large solute are dynamically frozen on the THz time-scale,
solutes are approximated by dielectric voids
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What does THz absorption tell us?

Maxwell: alpha=1
Sugars: alpha =-0.2 - 0, no interface dipole!
Amino acids: alpha =-5- -0.1, interface dipole opposite to the field!
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Weakly hydrophilic solutes (glucose) leave no footprint, hydrophilic solute
enhance the polarity relative to water.



Lysozyme: cavity field
City field response
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Range of protein-water correlations

X0s(7) o< (0Mg - dM(7))

'_ = lambda repressor
e cytochrome ¢




Protein-Water Interface

Water structure is locally broken: surface polarization is determined by the residue
Frustration of surface polarized domains: long propagation into the bulk

Heterogeneous dynamics of the interfacial polarization



Coupled protein-water fluctuations (GFP)
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Low-frequency motions of the protein move both the ionized surface

residues and the water shells polarized by them.
JPCB 116 (2012) 10294






Proteins:
Large-scale electrostatic fluctuations (lots of surface charges)
Slow modes

What if the rate of the reactions is faster than the fluctuations?
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Ergodicity

Poce PHPO g —=1/(kgT)

{p,a}

Mathematical abstraction: Tobs —7 OC



Canonical ensemble: “All the ‘fast’ things have happened and all the ‘slow’ things
have not”

- R. Feynman

slow fast

observation time

distribution

part of phase space reached

on the observation time-scale Relaxation time



Biology: continuous ergodicity breaking

rate constant

\ wObS




Dynamically restricted ensemble

frozen sub-space

Canonical (Gibbs) average over motions
faster than the rate

k< w

canonical ensemble



Nonergodic kinetics

Activation barrier depends on the rate

F(X)

k o exp|—FF, (k)
_
self-consistent solution for k



Electron tunneling (hopping conductivity)

gas condensed matter
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Reorganization energy (extent of medium deformation)



Dynamics vs thermodynamics

Stokes-shift time correlation function: [~~~ AR
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Reaction free energy & activation barrier

kg ~ 3 — 20 from MD of redox proteins



Bacterial photosynthesis: Energetics
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HA to QA
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bcl complex of respiratory chains

Reaction rate ~ | ms

matrix space

intermembrane !;

space 2H 6y

Acceptor

Martin, LeBard, DVM, JPCL 4 (2014) 3602.






bcl complex: lambda(k)

200 ns simulation
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Why are enzymes big?

We are all familiar with the systems like software (or government legislation) ...
can grow rapidly in size over a number of years. Enzyme evolution is a great
deal slower - but it has been going for million of years...

“From Enzyme Models to Model Enzymes”, Kirby & Hollfelder

Maybe because slow reactions require slower elastic deformations of the interface
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...the advancement of science depends on the discovery and development of exact ideas ...
to warrant the deductions we may draw by the application of mathematical reasoning.

- J. C. Maxwell

Biological interfaces are “different”

Nonergodicity introduces timescales to where previously
only (free) energy has ruled.

SS NSF

Prof David LeBard Dr Daniel Martin
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Lambda: dynamical transition
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Glassy kinetics
Fi(X)
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High-temperature rate constant:

A
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Fogel-Fulcher-Tammann high-temperature kinetics




Bacterial charge separation (3 ps reaction time!)

A(K) o [k " () (dw/w)

k ox exp[—fBF, (k)]
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self-consistent solution for k

Mk=03ps™)=0.35eV
Mk —0)=24eV



“Surface” dielectric constant
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Dissipative Electro-Elastic Network Model (DENM)
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CytB: potential response
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Elastic deformations of the protein shape



Nonergodic free energy surfaces

AV =5 eV
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Spectroscopy in super-cooled liquids
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Freezing out of nuclear degrees of freedom on the time-scale
of phosphorescence

DVM, Acc.Chem.Res’07



Signature of nonergodicity

Fi(X)

protein water

b = Pw + Py
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Time arrow of biological electron transport
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Population dynamics
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Fokker-Planck operator depending on F'(X, kgT)

P(t) = / P(X,t)dX

LeBard, Kapko, DVM, JPCB 112 (2008) 10322



Does sequence matter?
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Protein Ap. e\( Aw,eV  Ag, eV Protein-water compensation
Myoglobin 9.9 79 1.8 depends on the surface charge
Cytochrome ¢ 6.9 \ 3.3 6.7 (sequence+folding).

\ critical term



Tobs > Ttr
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Energy conversion machinery

photosynthetic  \np  A7p
reacton centers

bcl complex

INPUT:
Lhoontinuous light l ATP-synthase
exciton electron } - == _ proton
' . = by
P /._ﬂke-.w-é? Q \ H+ s
: \
¢ AN Y Y
Py (P S e N\ / :
reaction center '<" = OUTPUT

light-harvesting

complex ADP ‘9

electron cycle, quinone cycle, proton cycle,
~driven by driven by driven b
single exciton electron cycle quinone c¢ycle






