Glassy protein dynamics and gigantic solvent reorganization energy of plastocyanin

David N. LeBard and Dmitry V. Matyushov
Center for Biological Physics
Arizona State University
Fast, inefficient $\sim 10^{12} \text{s}^{-1}$

Slow, efficient $\sim 10^4$-10^9s^{-1}

But we will show that λ is large.

$\Delta G = -\lambda$

$\Delta G = 0$

Marcus model's restriction:

$\Delta x_{st} = 2\lambda$

Tradition shows that λ is small.

$E^{\text{act}} \propto \lambda/4$, $\lambda \sim 0.8 \text{ eV}$ requires a very close approach.

λ must be small to not lose energy, ~ 0.1 - 0.2 eV
Solution Electron Transfer

\[\lambda_2 = 2 \lambda_1 \]

Protein Electron Transfer

\[Y = X + \gamma q \]

Proteins have glassy conformational dynamics.

Our model shows that \(\Delta X_{st} \) is frozen.
For protein ET, there is a clear breakdown of the link between λ and ΔX_{st}.

Now, when reorganization energy rises, the activation barrier drastically lowers.
Our model describes biological electron transfer including a huge λ and a frozen ΔX_{st}.

Acknowledgments

$$\$: NSF, GPSA Travel Grant

Computer Time: ASU Fulton HPCI, PSC

Publication: Will appear in JPCB, and on the cover!
Supplemental Data Section

(a) $G_i(X)/eV$

(b) $G_i(Y)/eV$
Supplemental Data Section
Supplemental Data Section

(a) $\tau_{ET} \ll \tau_q$

$\lambda = \lambda_p$

(b) $\tau_{ET} > \tau_q$

$\lambda = \lambda_p + \lambda_q$