Sluggish solvents and fast reactions: Dynamical arrest of electron transfer

Dmitry Matyushov

Arizona State University,

Department of Chemistry and Biochemistry,
Department of Physics and Astronomy,
Center for Biophysics,
Center for Early Events in Photosynthesis
What if Boltzmann does not work?

Dynamical solvent control:
\[
\frac{\hbar}{V_{ET}} \approx \tau_s, \quad k \ll \tau_s^{-1}
\]

Dynamical arrest:
\[
k \propto \tau_s^{-1}
\]
\[
k^{-1} \approx \tau_s
\]

Strong ergodicity breaking: “Equilibrium is when all fast things have happened, and slow things not yet” (Feynman)

Weak ergodicity breaking: things keep happening....
...not quite, vibrations are done
Spectroscopic Evidence

- MTHF
-

\[\Delta V_{\text{st}} / \Delta V_{\text{st, eq}} = \text{function of } T/T_{g} \]

- quinoxaline
- \(\tau_{\text{obs}} = 1 \text{ ms} \)
- (R. Richert)

- complex 1
- \(\tau_{\text{obs}} = 10 \text{ ns} \)
- (Verhoeven et al.)

- Hoffman and Ratner, 1996

\[\lambda(\text{obs}) / \lambda(\text{eq}) = \exp[- D/(T-T_{g})] \]

- Complex 1
- quinoxaline
Natural Photosynthesis

[Diagram showing the process of natural photosynthesis with labels for BM, BL, HM, HL, QM, QL, FE, and H+.]
Ergodicity breaking
Trick: Step-wise Frequency Filter

Equilibrium reorganization energy:

$$\lambda_s = \frac{\langle (\delta \Delta E)^2 \rangle}{2k_B T} = \int_0^\infty \chi''(\omega) \frac{d\omega}{\pi \omega}$$

Donor-acceptor energy gap

Nonergodic reorganization energy:

$$\lambda(\omega_{obs}) = \int_{\omega_{obs}}^\infty \chi''(\omega) \frac{d\omega}{\pi \omega}$$

Cutting off low frequencies below

$$\omega_{obs} = 1/\tau_{obs}$$

Fluctuation-dissipation theorem

Dielectric continuum

$$\chi''(\omega) \propto \frac{\epsilon''(\omega)}{|\epsilon(\omega)|^2}$$
\[\lambda_s = \left\langle (\delta \Delta E)^2 \right\rangle / 2k_B T \]

\[c_v / k_B = 3/2 + \frac{\left\langle (\delta E)^2 \right\rangle}{N(k_B T)^2} \]

\[\chi_P = (k_B T V)^{-1} \left\langle (\delta M)^2 \right\rangle \]
Stokes Shift in Supercooled Solvents

\[\lambda(\omega_{\text{obs}}) = \int_{\omega_{\text{obs}}}^{\infty} d\omega \int F[\Delta E, \chi(k, \omega)] dk \]

Field of atomic charges, calculated from quantum mechanics

Microscopic correlations between the dipoles

\[\chi(k, s) = \chi(0,0) \left[\frac{S(0)}{S(k)} + \frac{1}{1 + p'(k \sigma)^2} \frac{\chi(0,0) - \chi(0, s)}{\chi(0, s)} \right]^{-1} \]

Given in terms of the Cole-Davidson dielectric constant \(\varepsilon(s) \) (experiment)
Stokes Shift Correlation Function

Experiment

Theory

quinoxaline/butyronitrile

$\nu/10^3 \text{ cm}^{-1}$

$\ln(t/\tau_{CD})$

$\nu_p/10^3 \text{ cm}^{-1}$

τ_{KWW}

$\nu_x(0) = 21350 \text{ cm}^{-1}$

$\nu_x(\infty) = 21066 \text{ cm}^{-1}$

$\beta_{KWW} = 0.44$
Electron Transfer Rates

\[\omega_{obs} = k_{ET} \]
\[\lambda = \int_{k_{ET}}^{\infty} d\omega \ldots \]

Nonergodic thermodynamics:
\[\Delta G(k_{ET}, T) = f(k_{ET}, T) \Delta G_s(T) \]
\[\lambda(k_{ET}, T) = f(k_{ET}, T) \lambda_s(T) \]

Self-consistent Franck-Condon factor:
\[k_{ET} = \left(\frac{2\pi V_{ET}^2}{\hbar} \right) e^{-S} \sum_n \frac{(S^n/n!)}{G_n(k_{ET})} \]
\[G_n(k_{ET}) \propto \exp \left[-\frac{E_a(k_{ET})}{k_B T} \right] \]

Wasielewski et al, JACS’01
Dynamical Arrest in Liquid Crystals

Nematics are sluggish solvents capable of producing dynamical arrest of sub-nanosecond rates at room temperature.
ET Rates in the Isotropic Phase

\[k_{ET}^{-1} = \int_0^\infty dt \int_{-\infty}^\infty dX \, P(k_{ET}, X, t) \]

Time of diffusion to the barrier top (Sumi-Marcus, Bixon-Jortner, Barbara et al.)
Energy Gap Law

![Graph showing the Energy Gap Law](image)

- **CR**
- **Barbara et al.**
- **Jortner-Bixon**
- **Inflection region**
- **Sharp change of nonergodicity**

The graph illustrates the relationship between the natural logarithm of the ER rate constant ($\ln(k_{ER} \times \text{ns})$) and the energy difference ($\Delta G_{CR}(eV)$).
Apparent β

For ergodic reactions:
\[
\log(k_{CR}) = 2 \log(V_{ET}) + \text{Const}
\]

The barrier depends on V_{ET} through the nonergodicity function in the inflection region of the energy gap law!

$$\beta = \beta_{el} / (2 - 3)$$
In the regime of **ergodicity breaking**, dynamics dramatically affect the rates through altering the activation barrier (**dynamical arrest of equilibrium solvation**)

\[
k_{ET} \propto \frac{1}{\tau_s} \exp \left[-\frac{E_a(\ldots)}{k_B T} \right]
\]

Dr. Pradip K. Ghorai

Dr. Vitaliy Kapko

$ NSF$
