Polarized hydration shells around proteins and the electrostatics of the protein-water interface

Dmitry Matyushov

Arizona State University,
Center for Biological Physics

Frontiers in Water Biophysics, May 25, 2010

Photosynthetic reaction center with its first solvation layer
Electrostatics of redox proteins

Observables:

$\langle \phi \rangle$ (average potential)

$\langle (\delta \phi)^2 \rangle$ (potential variance)

Plastocyanin, electron carrier in photosynthetic systems of plants

Bacterial reaction center in a detergent micelle
Why electrostatics?

- Control enzymatic reactions
- Sensitive to the orientational structure of water around proteins
- Probed by optical (Stokes shift dynamics) and dielectric spectroscopies

Gaussianity of fluctuations

Water reorganization energy:

$$\lambda = -\frac{1}{2} q \langle \phi \rangle$$

Gaussian fluctuations:

$$\lambda^{\text{var}} = \frac{q^2 \langle (\delta \phi)^2 \rangle}{2kT}$$

Stokes-shift dynamics:

$$C(t) \propto \langle \phi(t) \phi(0) \rangle$$
Non-Gaussian electrostatics above the dynamical transition

Onset at about 160 K, methyl rotations

Exponential relaxation
Stokes-shift dynamics

Slaving of protein motions
Time-scale issues

Taking averages over parts of the trajectory

Average electrostatic potential is produced by fast water motions

~300-500 ps is the time-scale of developing non-Gaussianity
Non-Gaussianity: hydration shell dipole moment

Table 1: First and second moments of the dipole moment magnitude of proteins and their first hydration shells.

<table>
<thead>
<tr>
<th>Protein</th>
<th>$\langle M_p \rangle / D$</th>
<th>$\langle (\delta M_p)^2 \rangle / kD^2$</th>
<th>M^I_s / D</th>
<th>$\langle (\delta M^I_s)^2 \rangle$</th>
<th>κ^I</th>
<th>$R_{\text{eff}} / \text{Å}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubiquitin</td>
<td>256</td>
<td>0.91</td>
<td>48</td>
<td>2.5</td>
<td>0.22</td>
<td>17.2</td>
</tr>
<tr>
<td>Lysozyme</td>
<td>150</td>
<td>1.44</td>
<td>77</td>
<td>1.4</td>
<td>0.23</td>
<td>20.0</td>
</tr>
<tr>
<td>Plastocyanin</td>
<td>249</td>
<td>24.0</td>
<td>582</td>
<td>438</td>
<td>0.20</td>
<td>18.2</td>
</tr>
<tr>
<td>Reaction center</td>
<td>996</td>
<td>56.9</td>
<td>705</td>
<td>609</td>
<td>1.19</td>
<td>50</td>
</tr>
</tbody>
</table>
Polar domains

For plastocyanin redox-active protein the first solvation layer breaks into two oppositely oriented polar domains.

For redox-inactive ubiquitin and lysozyme the distribution is close to Maxwellian.
Polarized ferroelectric domains in the hydration layer

Dielectric constant of the first hydration layer:

Lys.................... 23
Ubiq.................. 28
PC...................... 2.5×10^3

$$\varepsilon(r) = 1 + \frac{4\pi \langle (\delta M_s(r))^2 \rangle}{3V(r)}$$

10-15 Å, penetration into the bulk
How far does it go?

Small dipoles per water add up into large dipolar fluctuations!
Terahertz spectroscopy of protein solutions

Hydrated proteins: one needs a dramatic increase of an effective dipole of the protein to get experimental points.

Gruebele + Havenith, Protein polarizes water 20 Å away from its surface (PNAS’07)!
Not only proteins …

Kihara sphere in SPC/E water:

\[\phi(r) = 4\varepsilon_{LJ} \left[\left(\frac{\sigma}{r - r_{HS}} \right)^{12} - \left(\frac{\sigma}{r - r_{HS}} \right)^{6} \right] \]

High polarity layer penetrates the bulk to \(\sim \) the cavity radius!
Conclusions

Redox-active proteins, large polarity of the hydration shell (correlated with protein dipole's variance).

Non-Gaussian statistics of the electrostatic potential.

Statistics return to Gaussian below the temperature of dynamical transition, ~200-240 K.

Dynamics of ferroelectric domains are slow, hundreds of picoseconds.

The length-scale of polarized (ferroelectric) domains is 10-15 Å into the bulk.

Breaking into domains occurs as a weak first-order transition in a sub-ensemble of hydration layer.

\[
\langle (\delta M)^2 \rangle \gg Nm^2
\]

\[
\lambda_{\text{var}} \gg \lambda
\]

\[
T_{tr} \approx 200 - 240 \text{ K}
\]

\[
\tau_{rel} \approx 100 \text{ ps}
\]

\[
l \approx 10 - 15 \text{ Å}
\]
David LeBard

Allan Friesen

JPCB 2008, 112, 5218

JPCB 2008, 112, 10322

PRE 2008, 78, 061901.

JPCB 2009, 113, 12424.

JCP 2009, 130, 164522.

PRE 2010, 81, 021914.

$$ NSF, BES $$
Length-scale of fluctuations

Dependence of the first and second cumulants on the cutoff distance from the protein surface.

Different length-scales for the first and second cumulants!
Electron transport in molecular chains

\[\lambda = \lambda_s = \lambda^{St} \]

\[\lambda^{eff} = \frac{(\lambda^{St})^2}{\lambda_s} \]

Number of electron hops in the non-Gaussian paradigm per one hop in the Gaussian picture:

\[\chi = \left(\frac{\lambda_s}{\lambda^{St}} \right)^2 \approx 10 \]

About 10 time higher energetic efficiency of biological machines in the picture of non-Gaussian electrostatic fluctuations!
Terahertz spectroscopy: Input from simulations

Protein+water dipole dynamics from simulations, plastocyanin

\(\Delta \alpha(\omega) / \alpha(\omega) \)

\(\lambda \)-repressor protein, Exp

volume fraction of protein
Gigantic reorganization energy: other studies

JACS 128, 13854 (2006)

JPCB 112, 14779 (2008) (CT in dendrimers)